

コンクリート構造物の補修・補強に関するフォーラム 2023

コンクリートの非破壊検査技術<u>最前線</u>

~コンクリート中の鋼材への電磁的作用 にともなう物理現象に基づく手法を中心として~

大阪大学 鎌田敏郎

- PCグラウトの充填状況
 PC鋼材の破断状況
- ③あと施工アンカーの固着状況
 - を対象とした、それぞれの非破壊検査手法の原理および
 - 実際の構造物への適用上のハードルと課題解決の方策
- ④コンクリート内部の鋼材の腐食状況の可視化のため
 - の手法
- ⇒ 上記①~④については、2022年度に私の研究室で得られた 最新の研究成果を一部ご紹介します!

①PCグラウトの充填状況

PC橋

新東名高速道路 芝川高架橋 2003年 土木学会田中賞 2006年 土木学会デザイン賞

プレストレストコンクリートの原理と グラウトの役割

緊張後、コンクリート部材とPC鋼材を一体化するとともに PC 鋼材をサビから保護するために、「グラウト」と呼ばれる 充填剤を注入します ポストテンション方式の場合、PC鋼材の 定着力は、定着具にて保持します

(株)ピー・エス三菱 HP より

PCグラウト充填不足による変状事例

横締めPC鋼棒の破断 鉛直締めPC鋼棒の破断 グラウト未充填箇所を非破壊で的確に検出したい

シースに沿ったひび割れ, エフロレッセンス

未充填部では充填部より グラウトによる拘束が小さい

未充填部では充填部より 振動が大きい

弾性波伝播シミュレーション

励磁コイル、AEセンサ

= 完全充填(100%)と完全未充填(0%)の比較

図中の%表示は充填率を表す.

こうした供試体の作製には、細かなノウハウが不可欠です!

グラウト充填率による波形の違い

供試体では良い結果が得られるが?

□ 実構造物における計測での課題

・ 鉄筋の振動もノイズとして混入する可能性

鉄筋からのノイズによる弾性波の干渉

シースによる弾性波が鉄筋からの弾性波により打ち消される可能性

その影響の程度を解析的に把握

PC鋼材に対する鉄筋のなす角度を変化させた

磁束密度の分布状況

■鉄筋 ■シース

鉄筋角度が増大するほど、鉄筋での磁束密度は減少!

次は実験で弾性波の波形を調べた

AE**センサ位置**100mmの場合

2PC鋼材の破断状況

- ▶ 永久磁石によりコンクリート中の 鋼材の着磁を行う
- > 内部の鋼材が破断している場合 は破断箇所に磁極が発生する

破断なし

破断あり

PC鋼材破断の検出でのハードルも?

PC鋼材配置図

鉄筋配筋図

検査対象となるPC鋼材の前面には鉄筋が一杯!

この鉄筋の存在が磁束密度プロファイルに与える影響が大

脱磁器を用いて鉄筋に付与された磁化を低減し、 その減少率に基づいてPC鋼棒に付与された磁束密度を算出する

<u>Step. 1</u>

着磁後の鉄筋(PC鋼材がない 場所で)の脱磁器による磁束密度 の減少率を求める.

<u>Step.2</u>

続いて、PC鋼棒+鉄筋で 着磁および脱磁を行う.

さらに、<u>Step.2</u> - <u>Step.1</u> によりの鉄筋の影響分を低減

計測装置(着磁、計測)

永久磁石

180mm $\times 165$ mm $\times 134$ mm, 3kg

磁気センサ

計測範囲:±300µT、 253mm×142mm×135mm、1.5kg

脱磁器 (実験前:PC鋼材の脱磁)

携帯型脱磁器 (構造物での脱磁)

鉄筋

シース内にPC鋼材を設置した試験体

/ コンクリート面を模擬

計測治具

鉄筋、シースの設置状況

補正後の「健全」と「破断」の比較

破断箇所(1000mm)での波形の半波長は, 垂直方向鉄筋による半波長よりも大きい

補正後のS字カーブの形状を精査することで破断検知が可能

③あと施エアンカーの固着状況

2012年12月2日の中央道での事故

人間の耳で聞く 打音検査でどこまで わかるか?

接着剤充填不良の評価

ボルト固着部の模式図

接着剤の充填ケース(充填率)

計測概要(弾性波をコンクリート表面で受信する場合)

波形エネルギーの定義

波形エネルギー= $y_1^2 + y_2^2 + y_3^2 + \dots + y_i^2 = \sum y_i^2$

接着剤充填率と波形エネルギの関係

└ 実際の現場でのハードルは何か?

様々な施工不良

ナット締結を<mark>解除</mark> →接着剤充填不良

ナット締結状態

コイル形状による違いは?

動磁場解析モデル詳細

表-4.4 磁気ヒステリシスパラメータ。

	. ,			保磁刀(A/m)
$4.17000 \times 10^2 \qquad 7.32113 \times 10^5 \qquad 1.38465 \times$	$ imes 10^{6}$	1.38465×10^{6}	7.32113×10^{5}	4.17000×10^{2}

÷

図-4.8 磁気ヒステリシス曲線。

動磁場解析結果の例

動磁場解析結果の例

偏心距離と水平方向に作用する電磁力

偏心距離10~20mmの条件で、ボルト埋込部を効率よく 加振できる.(偏心0mmでは、左右の力が相殺され不適。)

物性値

	密度 (kg / m ³)	ヤング率 (N / m ²)	ポアソン比
コンクリート	2.3×10 ³	3.0×10 ¹⁰	0.2
ボルト	7.9×10 ³	2.0×10 ¹¹	0.3
接着剤	1.2×10 ³	2.0×10 ⁹	0.4

ボルトの固着長ケース

弾性波伝播シミュレーション

固着長130mm ボルト中心から100mm

固着長20mm ボルト中心から100mm

■■□ この差を定量的に比較するため ■ に波形エネルギーを算定

附属物がナットで締結された あと施エアンカー部の接着剤充填不良を 評価できる可能性

最後に・・・少しだけ

④コンクリート内部の鋼材の腐食状況の可視化

のための非破壊検査手法

鋼板上の渦電流の局所的な変化により腐食を可視化

渦電流が生成する二次磁場を磁気センサアレイにより面的に計測

①基本的な<u>波数パターン</u>を切削試験体で模擬

②サーチコイルを二次元的に配列した<u>磁気アレイセンサ</u>を 用いて基本波数パターンの磁気分布を計測

③コンクリート表面近傍で計測した信号を波数空間の フーリエ変換で基本波数パターンに分解

④基本波数パターンの磁場分布を合成し、鋼材表面の 磁場分布を再構成

鋼材腐食部での電磁場応答に基づき 鋼材の腐食状況を「逆問題解析」により可視化

磁気アレイ増幅器

磁気アレイセンサ (SC×64ch)

2050年へ向けた社会基盤構造物の長寿命化のためのイノベーションの例

構造物の 内部状況の 可視化

イノベーション 2050年の目標

弾性波、電磁 波、電磁場応 答など、

非破壊検査技術を駆使した

構造物の内部 可視化が実現

期待できる効果の例

安価な構造物可視化技術 の出現により、的確な補修・ 補強の要否の判断、補修・補 強箇所の最適化などが可能 となることにより、高速道路を 始めとして、財政事情の厳し い地方管理の構造物でも経 済的なインフラメンテナンス が可能となる。

日本コンクリート工学会(JCI)イノベーション戦略委員会報告書(2020.10): 「未来を守る・変える・創るコンクリートイノベーション」より
ご清聴ありがとうございました!

Osaka University

大阪大学

Senri Gate of Suita Campus

欧田キャンパス