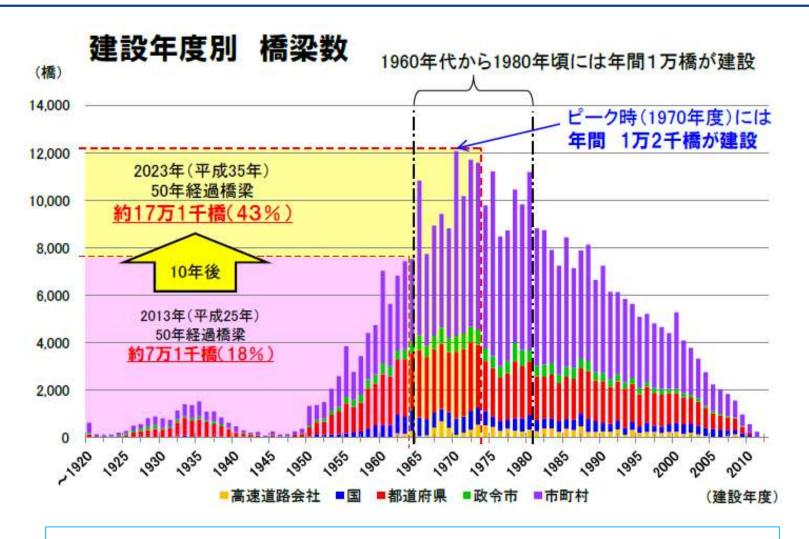
主催:一般社団法人 コンクリートメンテナンス協会

維持管理に関する最近の話題

十河 茂幸

近未来コンクリート研究会 代表 一般社団法人コンクリートメンテナンス協会 顧問 工学博士 コンクリート診断士

話の内容


- □ 国土交通省の動向
- □ 予防保全を目的とした点検

⇒ 診断士の資格を取ろう

1. 国土交通省の動向

- ロ インフラ高齢化の実状
 - ⇒ 歴史から劣化原因を考える
- □ 道路橋と管理者の実態
 - ⇒ 地方の自治体が課題
- □ 1巡目点検の結果と対応
 - ⇒ 市町村の延命化の遅れ

インフラ高齢化の実状

令和5年に橋梁の43%が50歳

老朽化は歴史から考える

~イケイケどんどんの時代~

1872年 新橋駅~横浜駅間の鉄道開業

1914年 第1次世界大戦 東京駅完成

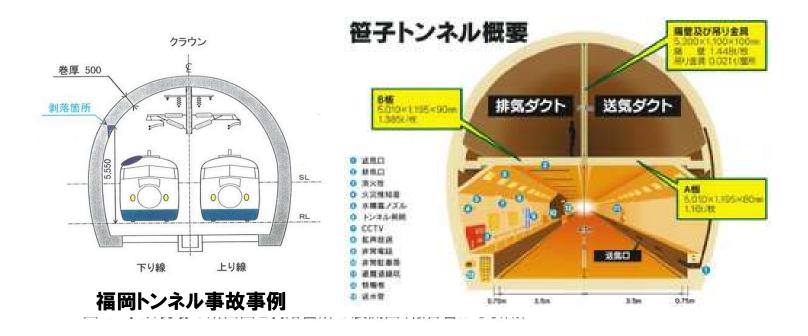
1923年 関東大震災

1941年 太平洋戦争開戦

1964年 東海道新幹線 東京~新大阪

1972年 山陽新幹線 新大阪~岡山(ASRの課題)

1975年 山陽新幹線 岡山~博多(海砂の使用)


1982年 東北新幹線(大宮~盛岡)、上越新幹線

1992年 山形新幹線

1997年 秋田新幹線、北陸新幹線

維持管理が重要と認識された事件

- □ 1999年 鉄道トンネル二次覆エコンクリートの崩落
- □ 2001年 コンクリート診断士資格制度の設立
- □ 2001年 土木学会示方書[維持管理編]の発刊
- □ 2012年 道路トンネルの天井版の崩落事故

老朽化は歴史から考える

~インフラ建設が衰退の時代~

1999年 福岡トンネル二次覆工崩落事故

2001年 コンクリート診断士資格の設立

2001年 土木学会コンクリート示方書維持管理編

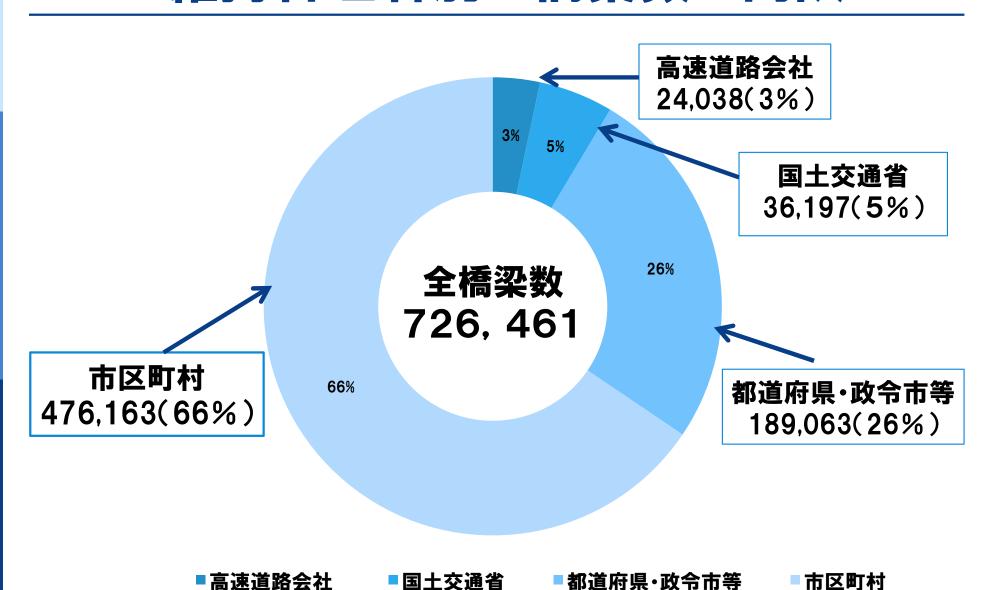
2012年 笹子トンネル天井版崩落事故

2013年 インフラ長寿命化基本計画(平成25年11月)

2014年 社会資本整備審議会の提言

2014年 インフラ長寿命化行動計画(平成26年5月)

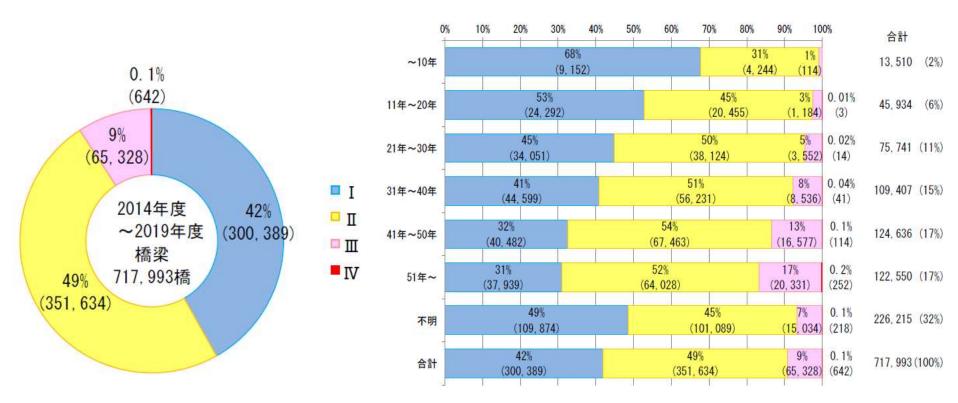
2015年 道路橋の点検実施


2020年 1巡目点検結果の報告

⇒ 令和2年メンテナンス年報 参照

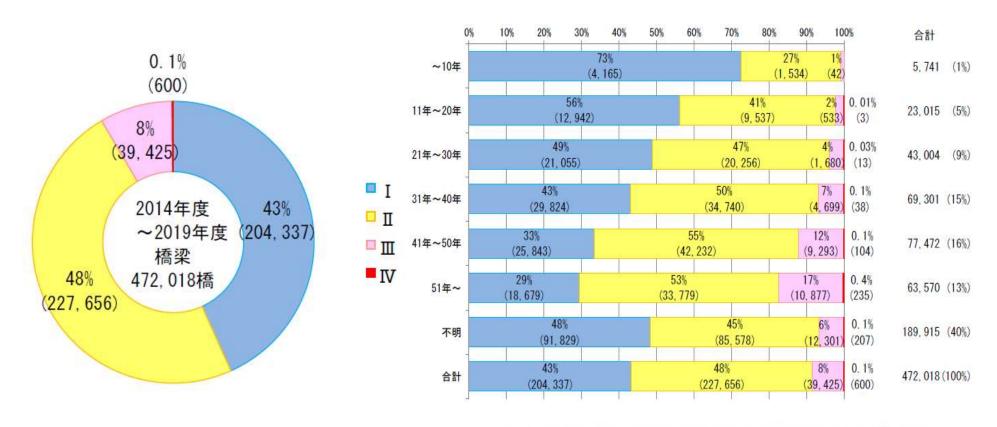
道路橋の数と管理者の実態

- □ 道路橋 約73万橋(2m以上)
- □ そのうち市町村の管理が66%
- □ 2m以下と調査対象も相当数
- □ 点検後の対応遅れが顕在化
 - ⇒ 市町村のRC橋の延命化が課題


維持管理者別の橋梁数の内訳

劣化グレードの定め方

区 分		状 態
劣化グレード I	健全	構造物の機能に支障が生じない段階
劣化グレードⅡ	予防保全段階	構造物の機能に支障が生じていないが、予防保全の観点 から措置を講ずることが望ましい状態
劣化グレードⅢ	早期措置段階	構造物の機能に支障が生じる可能性があり、早期に措 置を講ずるべき状態
劣化グレードIV	緊急措置段階	構造物の機能に支障が生じている、又は生じる可能性が 著しく高く、緊急に措置を講ずるべき状態


全道路管理者の点検結果 (令和2年メンテナンス年報より)

※点検を実施した施設のうち、2020年3月末時点で診断中の施設を除く。

○ 2019 年度末時点における判定区分の割合は、橋梁: I 42%、II 49%、II 9%、IV 0.1%、トンネル: I 2%、II 58%、III 39%、IV 0.4%、道路附属物等: I 32%、II 53%、III 15%、IV 0.1%です。

市区町村管理者の点検結果(令和2年メンテナンス年報より)

※点検を実施した施設のうち、2020年3月末時点で診断中の施設を除く。

○ 2019年度末時点における判定区分の割合は、橋梁: I 43%、II 48%、II 8%、IV 0.1%、 トンネル: I 3%、II 58%、III 37%、IV 2%、道路附属物等: I 19%、II 59%、III 22%、 IV 0.3%です。

点検結果から見えるもの

- □劣化は年を経るごとに増える。
 - ⇒ 劣化度Ⅱから劣化度Ⅲに移行
- □劣化は施工より環境に支配される。
- □市町村の延命化は予算が必要。
 - ⇒ 重要でないインフラが取り残される。
 - ⇒ 点検に費用を掛けないで、 効率的に延命化を図る。

補修対応の実態 (1巡目点検の措置の実施状況)

点検済みの劣化度ⅢおよびⅣの橋梁における補修の実施例 (国土交通省編:メンテナンス年報2020年度より)

管理者	修繕 が 必要 A	修繕に 着手 B	修繕が 完了 D	着手率 (B/A)	完了率 (D/A)
国土交通省	3,427	2,359	1,071	69%	31%
高速道路会社	2,538	1,202	705	47%	28%
都道府県·政令市等	20,535	9,052	5,057	44%	25%
市町村	42,338	12,324	7,812	29%	18%
合計	68,836	24,937	14,645	36%	21%

Ⅰ:健全 Ⅱ:予防保全段階 Ⅲ:早期措置段階 Ⅳ:緊急措置段階

このうち、グレードⅢおよびⅣと判定された橋梁が対象

老朽化対策の進まない理由

- ■橋梁点検の膨大な数 5年ごとの点検で、予算が膨大
- □点検する人材の問題 維持管理をするのは自治体の役目
- □点検に応じて補修をする費用の課題 予算が微増では早急な補修は不能

つまり、・・・

社会資本の整備では、

- 1多くの橋梁を費用をかけないで点検し、
- ②点検頻度を延ばす橋梁を選別し、
- ③早期に補修を要する橋梁に対応する。
- 4これにより、安全・安心の整備を行う。
- ⇒ よって、予防保全を目的とした点検が必要

2. 予防保全を目的とした点検要領

- □ 劣化事例の多い塩害を対象
- □ 塩害による劣化は鉄筋腐食
- □ 鉄筋の腐食は打音では手遅れ

⇒ 健全に見える腐食時期を予見

コンクリートの老朽化の主要因

塩害

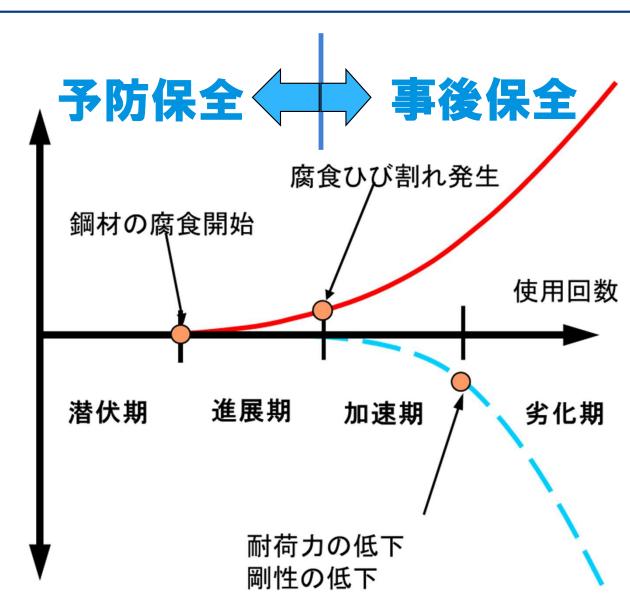
ASR

凍害

鉄筋腐食

中性化

化学的腐食


過大外力

疲労

塩害による劣化進行過程の概念

塩害による劣化

部材の性能低下

劣化要因と潜伏期・進展期の外観

劣化要因	潜伏期	進展期	
塩化物 イオン	外観上の変状なし 腐食発生限界Cl ⁻ イオン量以内	外観上の変状なし 塩化物イオンによる腐食開始	
中性化	外観上の変状なし 発錆限界以上の中性化残り	外観上の変状なし 中性化による腐食開始	
ASR	外観上の変状なし 膨張によるひび割れなし	膨張ひび割れの発生 変色、アルカリシリカゲルの滲出	
凍結融解 作用	外観上の変状なし 凍結融解の繰り返しを受ける	スケーリング、ひび割れの発生 ポップアウトの発生など	
化学的腐食	外観上の変状なし 表面の変質が認められない期間	表面が荒れた状態 ひび割れの発生	

予防保全を目的とした点検事例

- □ 外観目視と打音検査では予防保全は困難
- □ 鉄筋腐食の可能性のある劣化因子を調査
- □ 中性化深さ測定から腐食の可能性を予想
- □ 塩化物イオン量から腐食の可能性を調査
- □ その他、基本的な設計・施工状況の調査
 - ⇒ 対策の時機を予見する!

調査項目(2019年 東広島市)

	調査項目	実施項目
1	形状寸法	・橋梁の寸法・形状の記録 ・調査状況の写真
2	表面観察	・外観調査(ひび割れ、変色、浮き、剥離など)→スケッチ、写真 ・内部不具合調査(空洞、豆板など)→スケッチ、写真 ・打音検査(テストハンマー)
3	鉄筋位置 かぶり厚さ	・電磁波レーダーによる鉄筋の配置 ・かぶり厚さの測定
4	圧縮強度	・リバウンドハンマーによる表面硬度測定から推定 (JIS A 1155、JSCE-G-504)
5	中性化深さ	①ドリル法による粉末で中性化深さ測定 (NDIS 3419) ②ろ紙に噴霧したフェノールフタレイン溶液が赤紫色に呈色 ③ドリルを止めてその時の深さをノギスで測定
6	塩化物イオン量	・乾式ドリル粉の採取 →実験室で簡易塩分測定器「クロキット」による塩分量測定

外観調査と打音検査(剥落を処理)

<u>打音検査</u> (剥落しそうな箇所を処理)

<u>ひび割れ調査</u> 劣化によるひび割れ 初期ひび割れか判断



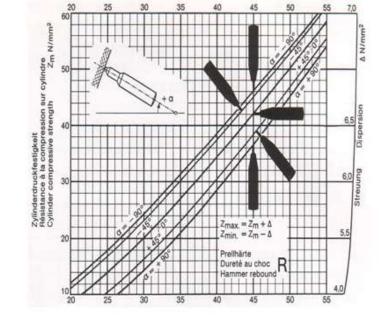
配筋状態の調査

電磁波レーダー法 配筋やかぶり厚さの測定

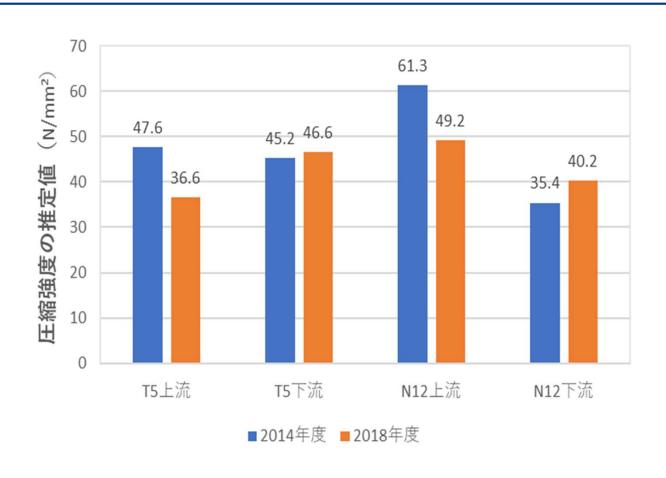
配筋状態の記録 300mm ×150mm

かぶり厚さ調査と外観調査

かぶり厚さ 50mm


かぶり厚さが小さいと鉄筋の腐食膨張で剥離

リバウンドハンマーによる強度推定



| 測定の状況

方向による補正方法

圧縮強度の推定値(呉市の事例)

⇒ 2014年と2018年を比較しても大差なし 設計基準強度(推定)に十分な余裕の強度

中性化深さの測定状況

対料の採取

中性化の判定

中性化深さ測定

中性化深測定とその評価(東広島市の例)

測定箇所		中性化深さ(mm)	
	A1橋台側	5.98	
上流側	中間部	4.35	
	A2橋台側	2.59	
	A1橋台側	15.24	
中央部	中間部	3.57	
	A2橋台側	1.81	
	A1橋台側	24.56	
下流側	中間部	22.52	
	A2橋台側	29.31	

建設後39年経過 t=39 中性化速度係数の算定 25=A√39 A=4.0

中性化残り10mmとして 40mまで中性化する年数 40=4√t t=100(年)

⇒建設後100年中性化せず

*建設後の年数から将来予測値から判定現状の判断では、残り60年間は中性化しない

塩化物イオンの浸透深さ調査

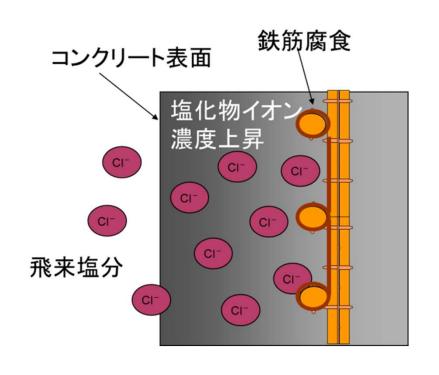
◆塩化物イオン量測定

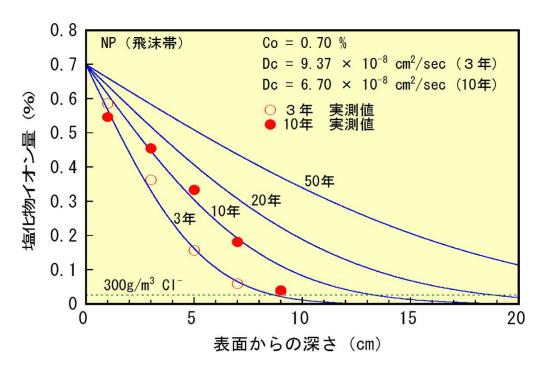
ドリルで試料を採取後、

簡易測定キット「クロキット」を使用

簡易塩化物イオン濃度測定器具

塩化物イオン量測定のための粉末採取




プドリルによる削孔 粉体採取状況 塩化物イオン量用 の粉体採取

塩化物イオンの浸透の概念

注:内在塩分の 可能性も考慮

$$C = Co \left\{ 1 - erf \left(\frac{x}{2\sqrt{D_c \cdot t}} \right) \right\}$$

Dc:拡散係数

Co:表面塩化物イオン量

安芸高田市の橋梁点検(2020年)

工業団地橋

建設年 1975年

幅員 12.6m

橋長 7.0m

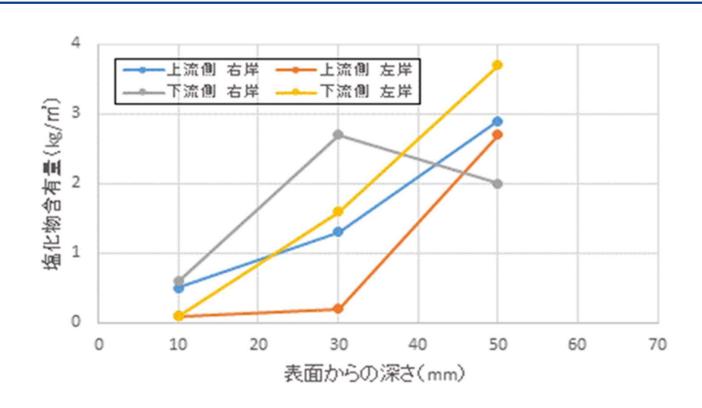
小原橋

建設年 1965年

幅員 4.6m

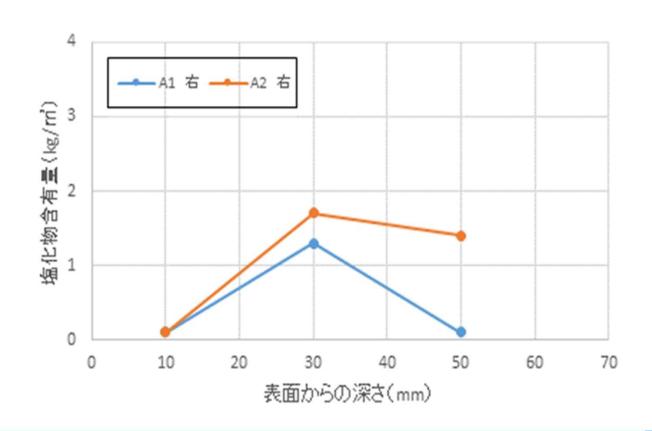
橋長 4.5m

砂田線1号橋

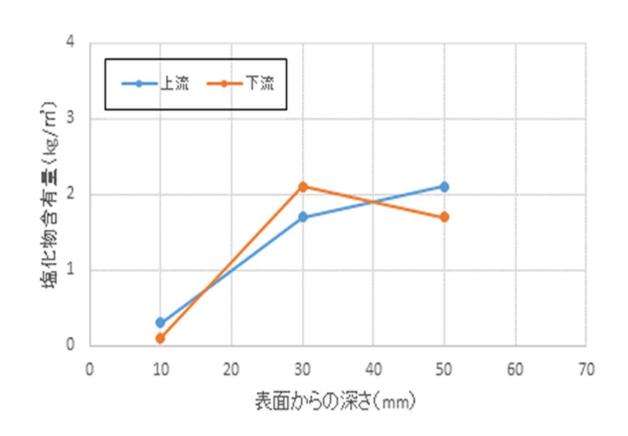

建設年 2004年

幅員 9.6m

橋長 8.7m



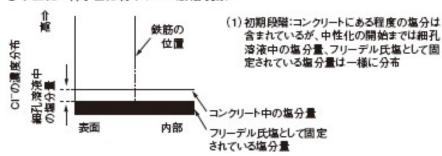
塩化物イオン量の評価(工業団地橋)

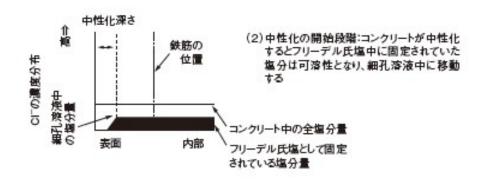

塩化物イオン量の濃度は内部ほど高い。鉄筋位置で腐食限界濃度に達している。

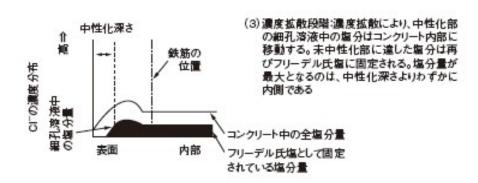
塩化物イオン量の評価(砂田線1号橋)

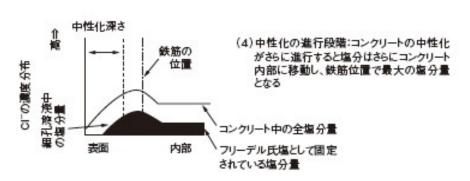
塩化物イオン量の濃度はかぶり30mmの位置が高い。 鉄筋位置で腐食限界濃度に未達と判断できる。

塩化物イオン量の評価(小原橋)

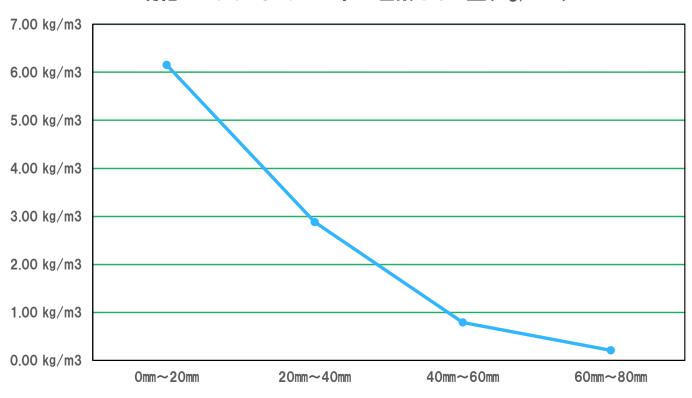

塩化物イオン量の濃度はかぶり厚さ30mm以深で高い。 鉄筋位置で腐食限界濃度に達していると判断できる。


塩分濃縮について


- ① 塩化物イオンが、フリーデル氏塩として固定化される。
- ② 中性化すると固定化されていた塩分が可溶性となり、細孔溶液中に移動する。
- ③ 未中性化域で、フリーデル氏塩は再度固定化される。
- ④中性化が進むと、塩分は内部に移動する。


この現象が塩分濃縮という。

●中性化に伴う塩化物イオンの濃縮現象



塩分濃縮のない塩化物イオン量の測定例

硬化コンクリート1.0m3中の塩素イオン量(kg/m3)

クロキットによる測定

まとめ

- □ 老朽化したインフラは増加
 - ⇒ 維持管理ビジネスは拡大
- □ 予防保全を目的とした点検が必要
 - ⇒ 点検に費用を掛けない
- □ 早めの措置で経費削減
 - ⇒ 整備予算を有効活用

コンクリート診断士を取得しよう!

□2001年コンクリート診断士制度を設立

□2022年4月現在 14

14,336名が登録

内訳

全国

官公庁等

1,233名(7.9%)

コンサル

3,963名(27.7%)

建設会社

5,564名(38.8%)

⇒ 診断士資格者は高評価