

コンクリートの基礎知識5

コンクリートの養生

もくじ

1. コンクリートの養生の目的	2
2. コンクリートの養生方法	4
3. コンクリートの養生技術	6

コンクリートの養生は、コンクリートの主要材料であるセメントの水和反 応を、十分に発揮させるために行います。それは同時に、材齢初期(打 設日からの経過日数があまり経っていない状態)の段階で、外部からの 力に耐えることのできる強度を得るまで、保護することを意味します。 養生という言葉の一般的な意味は、生を養うことであり、健康を増進す ること、自然治癒を促すこと、対象物や周辺のものを守ることです。コ ンクリートの養生も特別な意味を持たず、強度を増すことや、コンクリー ト自体を守ることを意味します。今回は、コンクリートの養生の目的、 養生方法などを紹介します。

1. コンクリートの養生の目的

コンクリートが硬化し、強度を得るためには、適当な温度と水分が必要 です。コンクリートの養生は、コンクリートに散水すればいいと考えてい る技術者が多くいます。しかし、ただ単に、水をかければコンクリート が凝結し、順調に硬化して、構造物が安全になるわけではありません。 部材の厚さが大きい構造物では、表面から水をかけても、内部までは 浸透しません。コンクリートは透水性が高くなく、緻密で水を通しにくい 材料です。

では、なぜ養生が重要なのでしょうか? 養生には、コンクリートが凝 結を始めてから硬化するまでの間、外部の影響から保護する意味があり ます。引っ越しの時に家具が、直接ぶつかり、損傷しないように保護す ることと同じです。示方書や仕様書に示される養生期間は、この保護に 必要な期間です。

コンクリートの品質管理のために、供試体(強度や耐久性などを試験 するために用いる試験体)を作製して強度試験を行います。その際に、 水中で養生をするより、気中に放置して養生した供試体の強度が、15 ~30%程低くなる実験結果が、多く報告されています。実際の養生では、 内部まで水が浸透しやすい供試体と、表面から水分が浸透しにくい実構 造物の違いを考えなければなりません。実構造物に含まれる水分は、 表面を除けば封かん(水の出入りがない)状態です。なお、表面付近は、 外部からの水分と温度の影響を受けやすいので、養生の作業には十分 な配慮が必要です。

『土木学会コンクリート標準示方書 施工編』に示される養生期間を**表** 1~表 3 に示します。温度が低いと、外部の影響に抵抗できるまでの 強度発現に時間を要するため、長い養生期間が示されています。表 2 と表 3 で、コンクリート構造物の養生期間は、水分の供給が十分にあ る条件下では、長く取られています。温度が低い状態で、コンクリート の表面が水で飽和されると、コンクリート中の水分が凍結し膨張する可 能性が高くなり、ひび割れの原因である凍害発生のリスクも高まります。 そのため、打設初期での凍害発生を抑えるとともに、凍害に耐えうる強 度を得るために、通常より長い養生期間が必要とされています。水分 の供給がない場合は強度が小さくてもよいため、これらの標準が示さ れています。つまり、養生期間は、外部の影響に抵抗できる強度を得 るまでの期間とする考えに一致します。また、大雨などからシートなどで、 打設直後のコンクリートを守ることも養生といえます。

表1:湿潤養生期間の 標準

日平均気温	普通 ポルトランドセメント	早強 ポルトランドセメント	混合セメント B 種
15℃以上	5 日	3 日	7 日
10℃以上	7日	4 日	9日
5℃以上	9日	5 日	12 日

表2:寒中コンクリート における養生期間の標 準

	養生		セメントの種類	
型枠の取り外し直後に 構造物がさらされる環境	養主 温度 (℃)	普通 ポルトランド セメント	早強 ポルトランド セメント	混合セメント B 種
コンクリート表面が水で 飽和される頻度が高い場合	5	9日	5日	12 日
	10	7日	4日	9日
コンクリート表面が水で 飽和される頻度が低い場合	5	4日	3 日	5日
	10	3 日	2 日	4 日

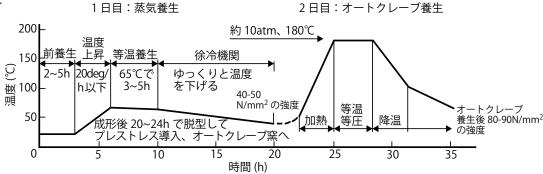
表3:初期凍害に抵抗 できる強度の目安

型枠の取り外し直後に	断面の大きさ (N/mm²)		
構造物がさらされる環境	薄い場合	普通の場合	厚い場合
コンクリート表面が水で 飽和される頻度が高い場合	15	12	10
コンクリート表面が水で 飽和される頻度が低い場合	5	5	5

▮2.コンクリートの養生方法

コンクリートの養生には、さまざまな方法があります。表 4 に各種の養 生方法を示します。湿潤養生はコンクリートの水和を進める効果を期待 するもので、直接水分を与えるたん水養生、散水養生、供試体で行わ れる水中養生などがあります。水分の逸散を防ぐのも養生の一つです。 型枠養生(型枠を存置している間は養生期間とする方法)、シート養生 などは封かん養生と考えるのが適切です。なお、気中養生という言葉が ありますが、水分を与えないで空気中にさらしているだけであり、養生 とは言えません。ただし、その間に外部の影響を加えないように配慮す る意味では、水分を与えない状態で保護しているとも考えることができ ます。

表4:各種の養生方法


*	4 + +	T 45	+'4	
養2	生方法	目的	方法	
たんフ	k養生	乾燥防止	スラブなど周囲の型枠をあらかじめ高くして、コンクリートの表面に水を張る方法。非常に効果がある。水深は 2 ~ 3cm。凍結の恐れがある場合は、水深を大きくする。	
散水	人力による散水より、スプリンクラーなどによる自動的な常		気象条件によって乾燥が激しく、散水の効果がムラになりやすい。 人力による散水より、スプリンクラーなどによる自動的な常時散水 がよい。コンクリートを冷やすと、温度ひび割れを誘発するので注 意する。	
		乾燥防止	コンクリートの表面仕上げ終了後、できるだけ早い時期に膜養生剤 を散布し、水分の蒸発を防ぐ。ごく初期の乾燥防止には有効である。 気温が高い場合には効果が減退する。	
保湿養生乾燥防止		乾燥防止	コンクリートに十分に散水し、その上から表面に密着するようシートをかぶせる。水の供給は状況に応じて 1 日 1 回以上する。保湿のためには、コンクリート露出面、開口部、型枠の外側をシート類で覆う。	
保温	養生	保温	コンクリート露出面、開口部、型枠の外側をシート類で覆う。外気 温が 0℃以下になる恐れのある場合に用いる。気温が著しく低い場合 には、適温に保つことは不可能となる。	
断熱養生 保温、温度ひび 割れ防止			コンクリート表面に断熱マットを敷いたり、発泡ウレタンスチロールなどの断熱材を張り付けた型枠を用いる。外気温があまり低くない (0℃程度) 場合、ある程度部材の寸法が大きい場合には有効である。	
蒸気	養生	プレキャスト部 材や 2 次製品 の強度発現促進	プレキャスト部材や 2 次製品の作成時に、蒸気を与えることにより、温度と湿度を供給し、強度発現を促進させる。湿潤状態が理想的である。ダクトで任意の場所に供給可能。装置が大きく、移動困難。生産性向上のために使用される。	
高温高圧養生 2 次製品の強 発現促進		2 次製品の強度 発現促進	2次製品の作製時に高温と高圧を与え、強度発現を促進させる。生産 性向上のために使用される。	
参考	標準養生	供試体の養生	20±3℃に保ちながら、水中または湿度 100% に近い湿潤状態で行う 養生。	
	封緘養生	供試体の養生	コンクリートから水分の逸散がない状態で行う養生。	

温度養生は、早い段階でコンクリートを硬化させて、工事のサイクルを 早めたい場合に行います。コンクリートの硬化を早めるために温度を高 めに設定すると、長期的にはコンクリートの硬化の進みは持続しにくく なります。必要以上に温度を高めない方が、結果としてコンクリートの 耐久性を高めます。

コンクリートの2次製品には、製造のサイクルを早めるために蒸気養生 が行われます。圧縮力をかけ通常のコンクリートより強度を高めたPC(プ レストレストコンクリート)を材料とする、PC パイル(基礎杭に利用) や PC ポール (電柱に利用) などでは、遠心力成型を行った後、蒸気 養生に加えて、オートクレーブ養生が行われます。これらの養生の一例 を**図 1** に示します。オートクレーブ養生を行う前に蒸気養生を行い、蒸 気養生の前には前養生と称して 2 時間程度静置する時間を取ります。 こ の方法は、実験を通じての経験的な方法です。 コンクリートの 2 次製品 は、長期的な強度の発現ではなく、納入時点での強度の確保が必要と

されます。

図1:オートクレーブ 養生の一例

▮3.コンクリートの養生技術

コンクリートの養生方法は、建設会社各社がさまざまな方法を使用して います。なぜなら、公共工事の総合評価制度で、養生技術を評価され ることが増えたためです。コストのかかる養生は敬遠されがちでしたが、 公共工事の獲得に貢献できることで、現場に採用される事例が増加して います。養生技術が評価され、さまざまな方法の養生が使用されるこ とは、コンクリートの品質を高めることにつながり、大変望ましいことで す。

養生の必要性に対する考え方は、土木構造物と建築構造物で異なりま す。建築工事では部材の厚さが比較的小さく、湿潤養生を主体に考え られます。一方、土木工事では部材の厚さが比較的大きいため、湿潤 状態に加えて温度に配慮しなければなりません。

建設会社各社が提案している養生方法は、水分を含ませたシートに保 温性能を付加させた工法です。その中に、工法名を付けるほど新規性 のあるものは少なく、通常使用される養生マットを用いることがほとん どです。養生時には、湿潤状態の保持と外気との温度差を小さくし、温 度の変動が少なくなることに配慮すればいいのです。初期の養生で得ら れる効果は、コンクリートの表面品質の確保であり、コンクリート構造 物の耐久性を向上させます。

いかがでしたか? 今回は、コンクリートの養生を解説しました。次回は、 コンクリートの仕上げを解説します。お楽しみに!

コンクリートの基礎知識5: コンクリートの養生

初版 2016年12月22日

広島工業大学 工学部 環境土木工学科 著者:

教授 十河 茂幸

発行元: 株式会社イプロス Tech Note編集部

E-mail:media@ipros.jp

URL:https://www.ipros.jp/technote/