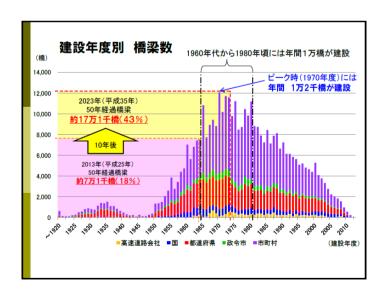
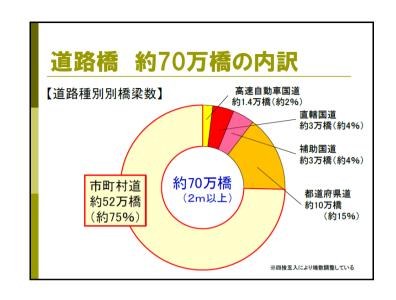
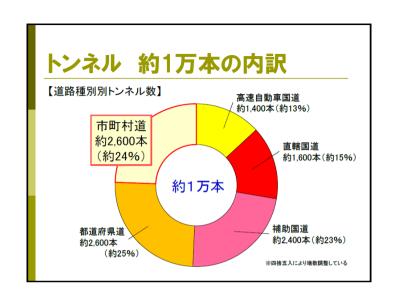
一般社団法人 コンクリートメンテナンス協会 主催 コンクリート構造物の補修・補強に関するフォーラム ~定量的な補修工法の選定と具体的な適用事例~

コンクリート構造物の長寿命化 ~点検・診断大作戦~

広島工業大学 十河茂幸 エ学博士 コンクリート診断士

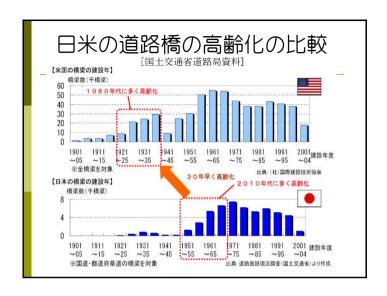

インフラの実状と真の課題


- □ 道路橋 約70万橋
- □ 道路トンネル 約1万本
- □ これらのインフラが高齢化


平成25年に橋梁18%、トンネル24%が50歳 平成35年に橋梁43%、トンネル34%が50歳

話の構成

- □ インフラの実状と真の課題
- □ 長寿命化に対する取り組み
- □ 小規模橋梁の点検の実施例
- □ 安全で快適な社会のために



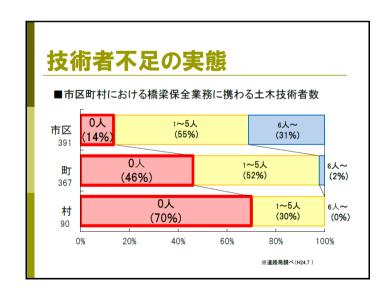
老朽化インフラの実態

- □ 使用制限を受けている橋梁
 - 平成20年 977橋
 - 平成25年 2,104橋
- □ トンネルのコンクリート剥落事例
 - 1999年 新幹線トンネル二次覆工
 - 2013年 高速道路トンネル天井版
- □ 高架橋のコンクリート片剥落 頻発

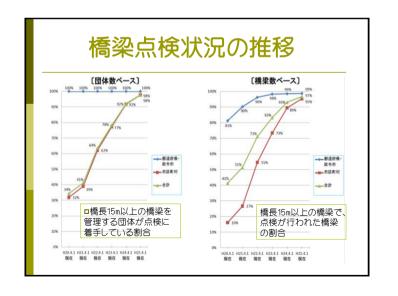
長寿命化に対する取り組み □ 国土交通省の対応 □ 広島県の対応 □ 広島工業大学の取り組み

各種インフラ施設の高齢化

≪建設後50年以上経過する社会資本の割合≫


	H24年3月	H34年3月	H44年3月
道路橋 [約15万7千橋(橋長15m以上)]	約9%	約28%	約53%
河川管理施設 _※ (水門等) [約1万施設] ※設置年が不明な施設は50年以上経過した施設として整理	約24%	約40%	約62%
下水道管きょ [総延長:約44万km]	約2%	約7%	約23%
港湾岸壁 [約5千施設]	約7%	約29%	約56%

国土交通省の対応の一例


- □ インフラ長寿命化基本計画 平成25年11月
- □ インフラ長寿命化計画(行動計画) 平成26年5月21日
- □ 道路の老朽化対策の本格実施に関する 提言 平成26年4月14日 ~社会資本整備審議会 道路分科会

目次(道路分科会の提言)

- Ⅰ 最後の警告
 - ~今すぐ本格的なメンテナンスに舵を切れ
- II 道路の老朽化対策の本格実施に向けて
 - 1. 道路インフラを取り巻く現状
 - 2. 国土交通省の取り組みと目指すべき方向性
 - 3. 具体的な取り組み
 - 4. おわりに
 - *詳細はHPを参考にしてください。

市町村の管理する道路が大半 全国の道路の管理者比率 - 高速道路 - 高速道路 - 補助道路 - 都道府県道路 - 市町村道路 - 市町村道路 - 市町村道路 - 市町村道路 - 市町村道路 - 市町村道路

中国地方整備局の長寿命化計画

目標:長寿命化を目指した新設コンクリート に関する検討により、手引書を作成 コンクリート構造物の耐久性向上が目的

検討方法:設計、施工、材料、維持管理を対象 アンケートにより情報を収集

各専門家からアドバイス

スケジュール: 平成26年度

広島県における長寿命化計画

~広島県長寿命化技術活用制度~

目標:長寿命化に資する技術の開発、活用を 推進し、維持管理コストを軽減する。

対象は点検、診断、補修・補強技術等

進め方:提案技術の申請⇒評価⇒登録⇒活用

スケジュール: 平成26年度から

*広島県のHP参照

広島工業大学の取り組み

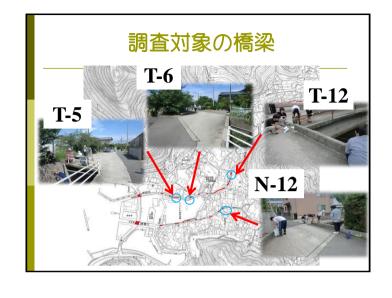
- ▶ インフラの簡易点検方法の検討
- > 呉市の地域活性化の一環として実施
- 小規模橋梁に対する調査の提案
- > 経済的な点検・診断を目標

小規模橋梁に着目すると、・・・

- 自治体による橋梁は点検済み
- ▶ しかし、小規模橋梁は?⇒研究対象
- 橋梁の保守管理は予防保全が原則
- > 早期の点検ため制度が必要

調査研究の方法

- 1. 対象とする橋梁の選定
- 2. 劣化因子の特定(塩害・中性化)
- 3. 設計•施工記録調查(履歴書)
- 4. 対象橋梁ごとの調査計画立案
- 5. 調査項目の選定
- 6. 調査の実施
- 7. 調査成果の整理・分析
- 8. 診断カルテの提案


小規模橋梁に視点

- ☆検は、費用を掛けない⇒小規模橋梁は簡易な点検
- 診断は、専門家による
 - ⇒ 最低限必要な項目
 - ⇒ 環境に応じた調査項目
 - ⇒ 簡易カルテの提案

調査対象の橋梁

- > 吳市豊町(大崎下島)
 - ⇒ 海岸近くは塩害劣化
 - ⇒ 河川上流は中性化劣化
- 河川に沿った小規模橋梁
 - ⇒ 橋長の短い無名の橋梁
 - ⇒ 過去に調査の形跡なし
- * 小規模橋梁の数は無数

調査項目と方法

- ▶ 目視・打音検査(ハンマー)
- ▶ 強度推定(リバウンドハンマー)
- ▶ 中性化深さ測定(ドリル法)
- ▶ 塩化物イオンの侵入深さ
 - ⇒ 簡易カルテの提案

調査方法(1)

◆反発強度測定

シュミットテストハンマーNR型 JIS A 1155は9点 現場では、12点の反発度測定 偏差の大きい3点を除外

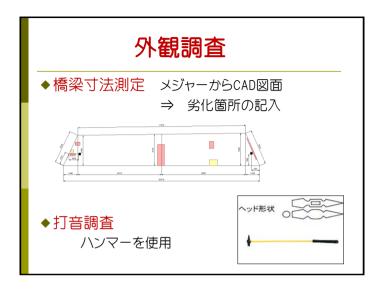
◆中性化深さ

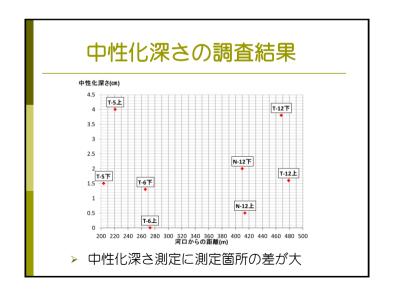
ドリル法でコンクリート粉末の採取 ドリル径は中8mm、最大で5cmまで フェノールフタレイン溶液で判断

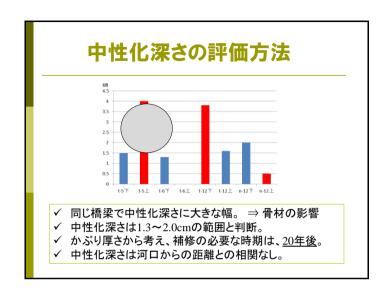
調査方法(2)

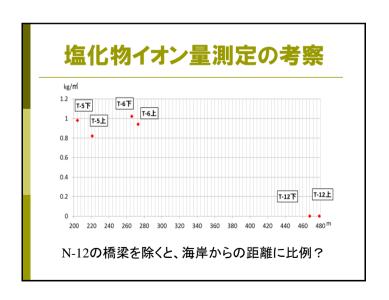
◆塩化物イオン量測定 ドリルで試料を採取後、

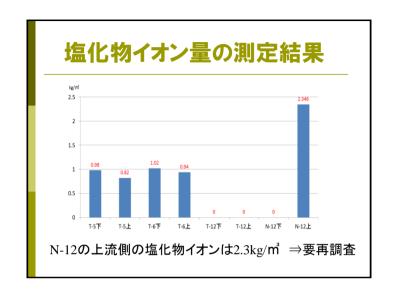
簡易測定キット「クロキット」を使用

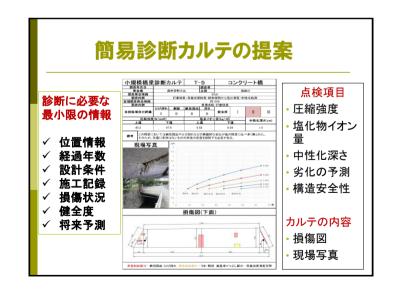


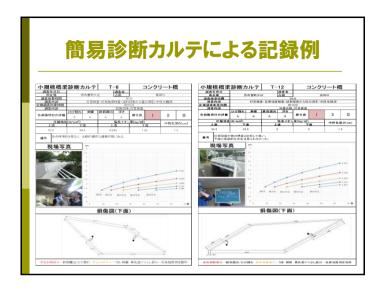



コンクリート粉末の採取状況


簡易塩化物イオン濃度測定器具







安全で快適な社会のために

- □ 小規模の橋梁などのインフラをどうする?
- □ 安全・安心・快適な社会を望むなら・・・
- □ 捨てるインフラを減らす必要がある。
- □ もちろん、今後の構造物は耐久性を確保。
- 既存の構造物の点検は費用を掛けない策を考える必要がある。
- ⇒ 簡易な点検、専門家による診断と対応

簡易点検に無人へりの活用

おわりに

- 歴史の残るコンクリート構造物は少なくない。
- 維持管理をしないまま劣化した構造物も多い。
- 手をこまねくより、手を尽くすべし。
- □ 完璧な対策でなくても、延命化策を 講じれば、長寿命化につながるはず。
- まずは、診てみよう。