軍艦島(端島)における RC建築物の状況と 保存に向けた検討

芝浦工業大学 建築学部建築学科 濱崎 仁

講演の内容

- ➤ 調査の経緯・概要
- > 軍艦島(端島)の概要と歴史
- > 軍艦島の劣化外力
 - 温湿度 風況
 - 飛来塩分
- ▶ 目視による調査結果
 - 部材の損傷・鉄筋の腐食
 - 構造性能(被災度判定)
- ▶ コンクリートの状況
 - ・ 中性化深さ
 - ・ 塩化物イオン量
 - ・補修方法の検討
 - ・ 中性化深さ
 - ・ 塩化物イオン量

調査等の経緯

長崎市より日本建築学会に対して、長崎市端島(軍艦島)のコンクリート構造物群に対して、劣化・損傷状況の評価や将来予測、補修方法の提案などに関する調査委託。

(委託期間:2011~2013 - 2015~)

長崎市より日本コンクリート工学会に対して、端島の構造物の補修・補強方法およびそれらの施工方法などに関する調査委託。 (委託期間:2015~2016)

2014年1月:

「明治日本の産業革命遺産 九州・山口と関連地域」として、ユネスコに推薦書提出

2014年10月:

軍艦島炭鉱跡が、「高島炭鉱跡」として国史跡に登録

2015年7月:

ユネスコ世界文化遺産の構成要素の一つとして登録 (建築物群については周辺要素の一つ)

建築学会における調査内容(全体)

- > 劣化外力の調査
 - 温湿度、風向
 - 飛来塩分量
- ▶ 材料に関する調査
 - 目視による劣化状況の調査
 - コンクリートの材料・調合(セメント、骨材、配合推定)
 - コンクリートの状態(中性化・塩化物イオン量)
 - 鉄筋の状態
 - その他の材料の状態
- > 構造安全性の調査
 - 常時微動調査
 - 耐震性能評価(日給社宅16号棟)
- > 護岸健全度調査
- > 補修方法の検討

軍艦島(端島)

北西側の航空写真

南東側の航空写真

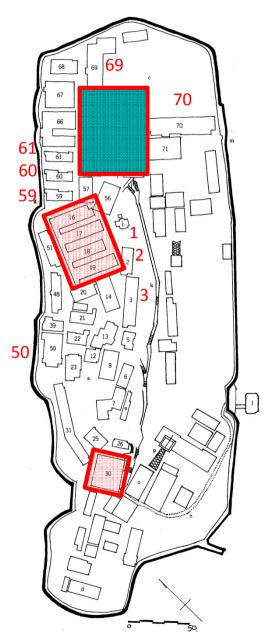
歴史的経緯

軍艦島の簡易年表

年	主な出来事
1810年(文化3)	端島で石炭が発見される
1890年(明治23)	三菱社が端島炭鉱を買収する
1891年(明治24)	出炭開始

埋め立て、 工事による 地形変化

1916年(大正5) 1918年(大正7)


1941年(昭和16)1945年(昭和20)1956年(昭和31)1959年(昭和34)1960年(昭和35)

1970年(昭和45) 1974年(昭和49)

軍艦島の建造物群(住居系)

30号棟:

大正5年・RC7階 日本最古のRC造集合住宅

16~19号棟: (日給社宅) 大正7年・RC9階 櫛形に並んだ高層RC住宅

65号棟: (報国寮) 昭和20年・SRC9階 島内最大規模の集合住宅

軍艦島の状況 _見学コースより

見学通路

総合事務所跡

仕上工場跡

軍艦島の状況写真

台風時の様子

70号棟外観

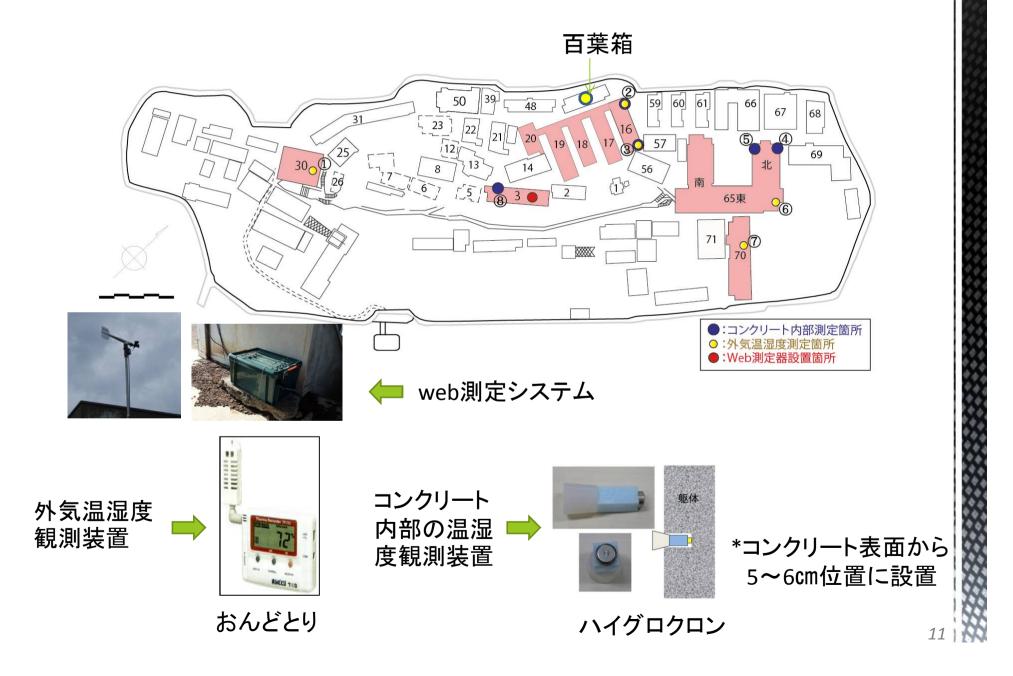
北西側護岸

70号棟基礎

軍艦島の状況写真

30号棟外観

地獄段(16号棟横 • S40頃)

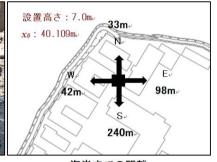


30号棟内観

地獄段(現在)

軍艦島の温湿度・風況の調査

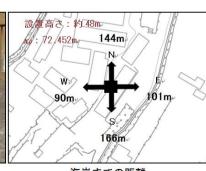
飛来塩分の調査


設置高さ:5™ 15m. 264m

飛来塩分捕集器

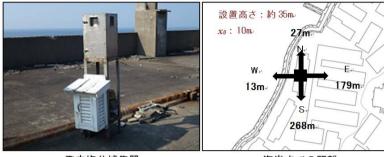
海岸までの距離。

51号棟の1階付近


飛来塩分捕集器

海岸までの距離

端島病院(69号棟)付近



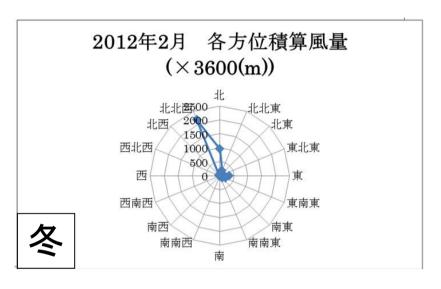
海岸までの距離

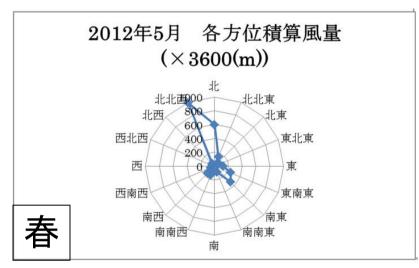
3号棟の屋上

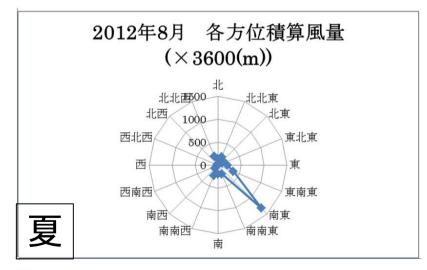
飛来塩分捕集器

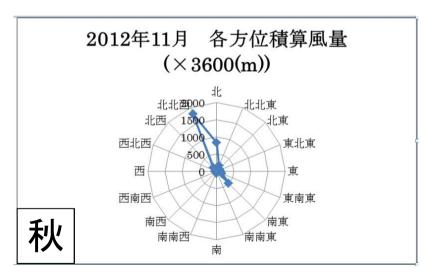
海岸までの距離

51号棟の屋上

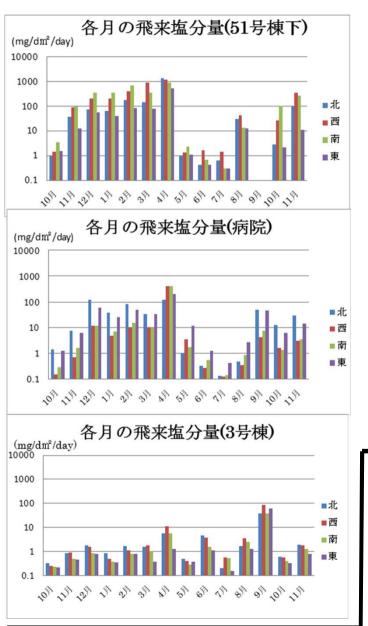

飛来塩分捕集器

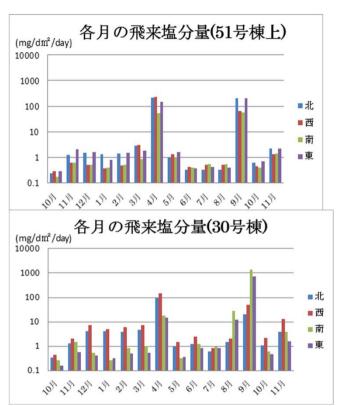

海岸までの距離


30号棟付近


各地点における飛来塩分 捕集器の設置状況

軍艦島の風況 (野母崎気象データより)





軍艦島における季節ごとの風況 (琉球大学山田義智教授より提供)

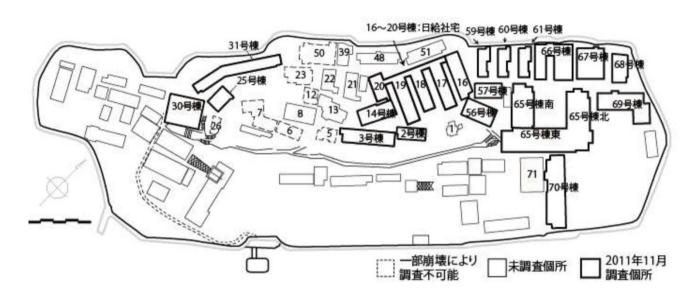
飛来塩分量 (年間の傾向)



各地点での月毎の飛来塩分量

構造物による 飛来塩分の回 り込み概念

飛来塩分量の比較 沖縄(辺野喜)との比較


端島病院と辺野喜(沖縄)の飛来塩分量比較

軍艦島(左)と沖縄県辺野喜(右)の海岸の状況

目視による劣化状況

一般的な腐食(損傷)グレードの例 軍艦島での腐食(損傷)グレード

損傷度	損傷状況
無	損傷が認められない
I	ごく軽微なひび割れさび汁
П	ひび割れ、さび汁、はく離等が部分的
Ш	ひび割れ、さび汁、はく離、剥落等が連続的
IV	鋼材の露出や破断、コンクリートの断 面欠損等

損傷度	損 傷 状 況
I	表面のひび割れ+さび汁
П	(中間の状況)
Ш	腐食した鉄筋が露出
IV	(中間の状況)
V	鉄筋の痕跡はあるが朽ちている (存在しない)

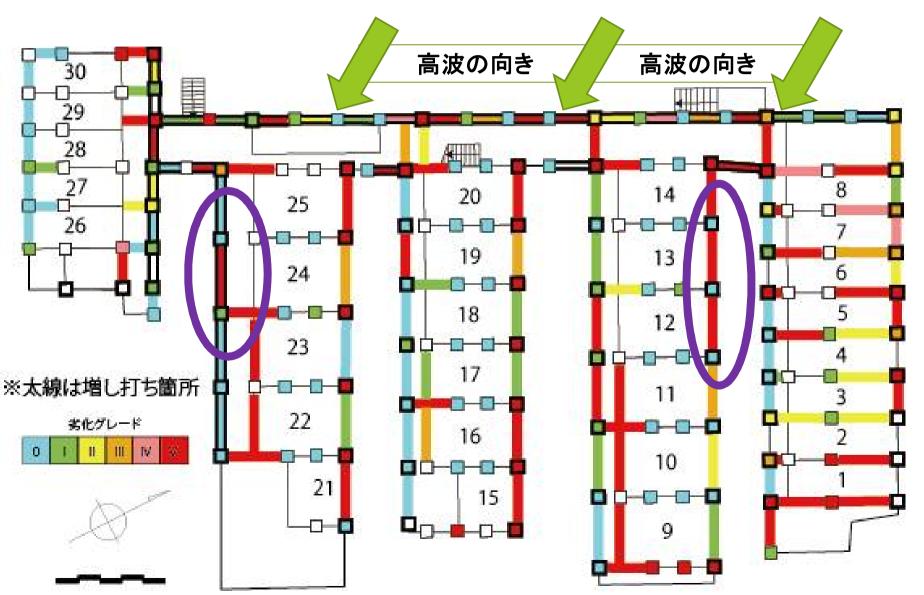
腐食グレードの例

グレード I

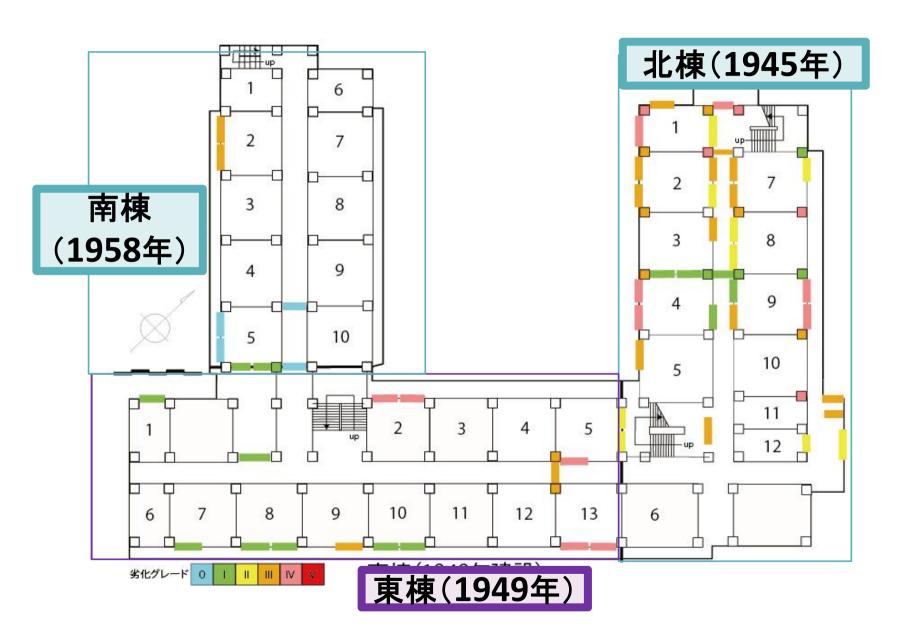
グレードⅡ

グレード皿

グレードIV



グレードV

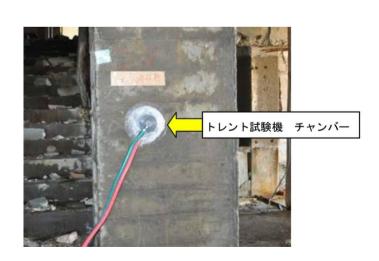


グレードV

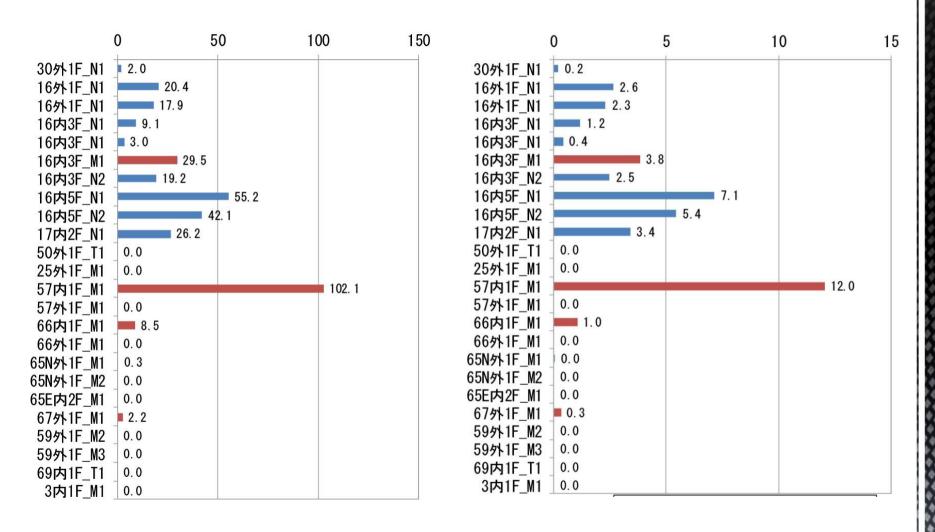
目視調査結果の例 日給社宅3階

目視調査結果の例 65号棟

コンクリート材料の調査


- > 使用材料
 - セメントペーストの状態
 - 単位セメント量
 - 骨材の種類
- > 圧縮強度
- > 中性化深さ
- ▶ 塩化物イオン量

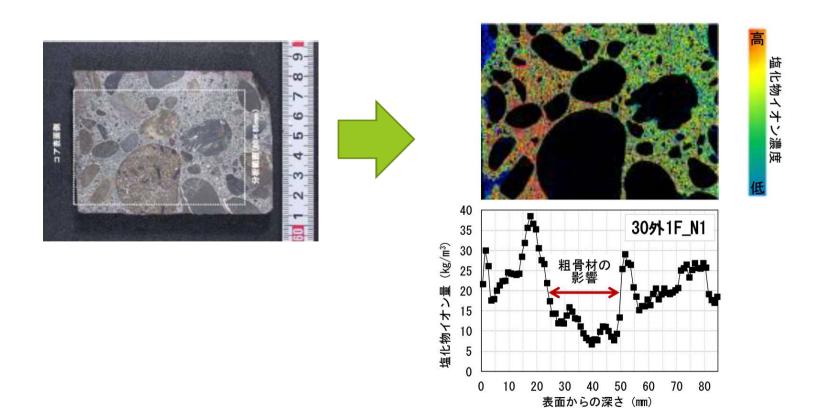
中性化深さの調査


調査方法:

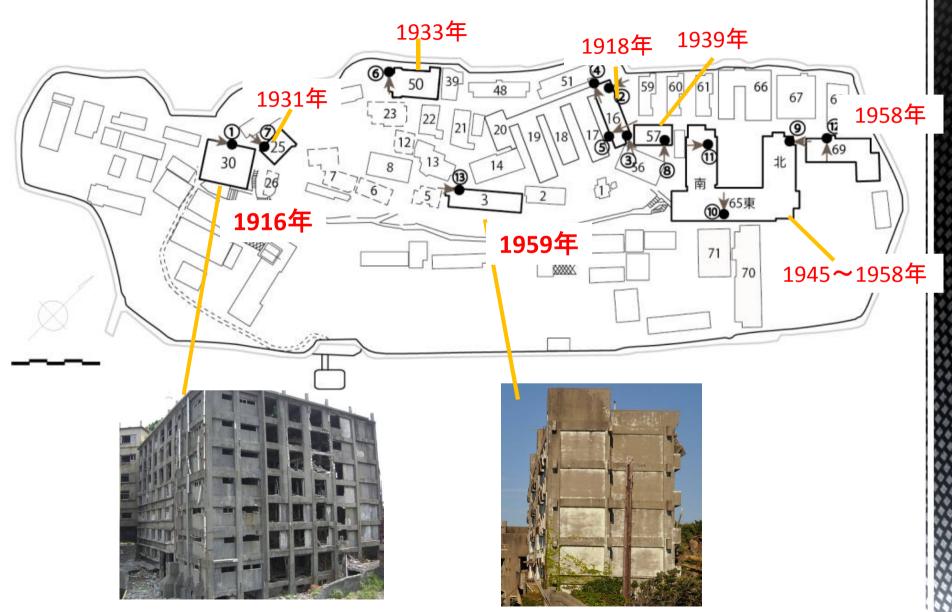
- (1) JIS A 1152(フェノールフタレイン法・コア側面 による調査)
- (2) 透気試験(トレント法)

中性化深さ試験結果

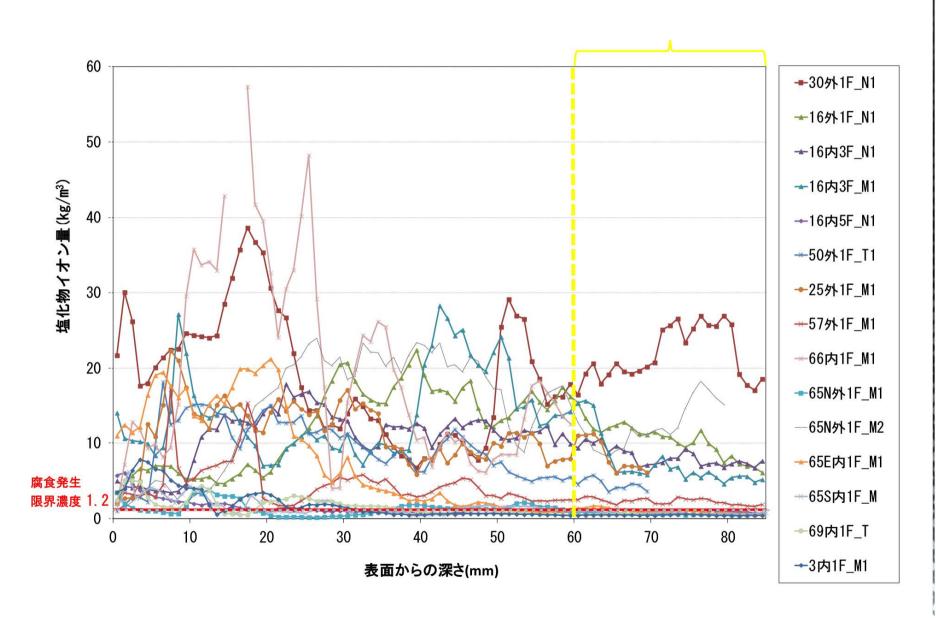
中性化深さ(mm)

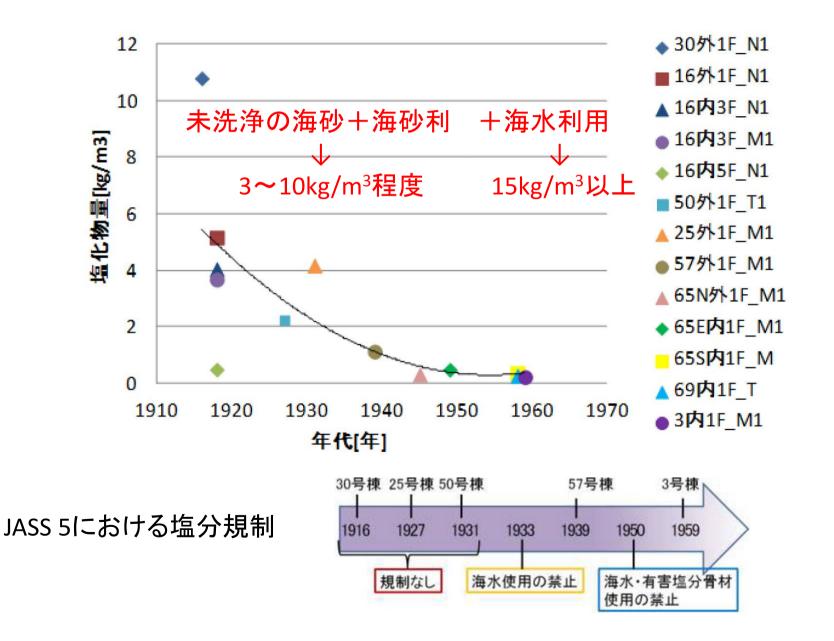

中性化速度係数(mm/v年)

■ 打放し ■ モルタル仕上げ ● タイル・テラゾー


塩化物イオン量の調査

調査方法:


(1) EPMA (電子線マイクロアナライザ) による塩化物 イオンの定量 (JSCE G 574参考)


塩化物イオン量の測定箇所

塩化物イオン量 (深さ方向分布)

建設年代と塩分量

暴露試験実施の背景・目的

日本建築学会(2011~2012)の調査の一環として、軍 艦島のRC構造物群の保存・補修方法を検討

- > 厳しい塩害環境と内在塩分
- > 経年による中性化の進行
- > 歴史的構造物であるが故の制約

外観をできるだけ変えずに、鋼材腐食の進行を抑制

歴史的構造物の保存・修復

ICOMOSの国際憲章(ヴェニス憲章) 歴史的構造物の保存・修復には、Authenticity(真 正な価値)の確保が必要

Authenticity確保の考え方:

- ① 建設時と同じ材料・工法を用いること
- ② 形状や色などを変えないこと
- ③ 全体と調和させつつ、修復部分が明確に区別できること・取り外せること

これらの条件を考慮し、軍艦島のRC 構造物群に適用可能な補修方法を検討

暴露試験の実施

基材モルタル

W/C=70%・S/C=4.5・細骨材の10%を鉄粉で置換

Cl-= 1.2kg/m³(内在塩分、飛来塩分が比較的少ない部位を想定) 10kg/m³(初期の建物、飛来塩分が比較的多い部位を想定)

基材モルタルの養生

材齢2日 湿空養生

材齢7日(5日間) 標準養生

材齢10日(3日間) 50℃気中乾燥

材齢31日(21日間) 促進中性化(中性化深さ約21mm)

~材齢42日 補修施工

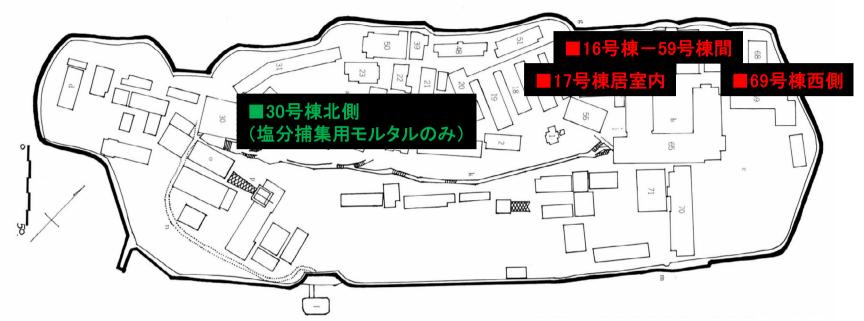
材齡56日 暴露試験開始

基材モルタルの形状・寸法

100×100×100mm 側面2面に補修を施し、残り4面を 厚膜表面被覆材でシール

暴露試験実施状況

69号棟(端島病院)西側 (飛来塩分が中程度の環境)



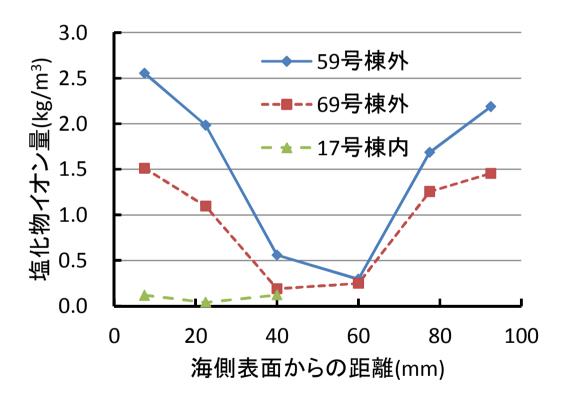
17号棟居室内 (飛来塩分が少ない環境)

補修仕樣

分 類	記号	仕 様
補修なし	N	補修無し
	MC	アクリルゴム系塗膜防水材(JIS A 6021)
表面被覆	WPE	防水形複層塗材E(JIS A 6909)
	CE	防水形複層塗材CE(JIS A 6909)
	LNP1	LiNO ₂ 表面塗布(400g/m ²) メーカー標準塗布量
	LNP2-1.2	LiNO ₂ 表面塗布224g/m ² (Cl ⁻ 1.2kg/m ³ 用・モル比1.0)
	LNP2-10	LiNO ₂ 表面塗布1120g/m ² (Cl ⁻ 10kg/m ³ 用・モル比0.6)
LiNO₂処理	LNIJ	LiNO ₂ 高圧注入処理(注入量: Cl ⁻ 1.2kg/m³用5cc/体、Cl ⁻ 10kg/m³用30cc/体)
	LNP+PCP	Li_2O_3Si 系固化材表面塗布 (200g/m²)後 $LiNO_2$ 表面塗布 (約 280g/m²)および $LiNO_2$ 混入ポリマーセメントペースト2mm塗付け
浸透性 吸水防止材	BP	シラン系浸透性吸水防止材塗布(600g/m²)
LiNO₂+浸透	LNP1+BP	$\rm LiNO_2$ 表面塗布 ($\rm 400 g/m^2$)後、浸透性吸水防止材塗布 ($\rm 600 g/m^2$)
性吸水防止材	LNIJ+BP	$LiNO_2$ 高圧注入処理(上記参照)後、浸透性吸水防止材塗布 (600g/m²)

暴露試験の実施状況

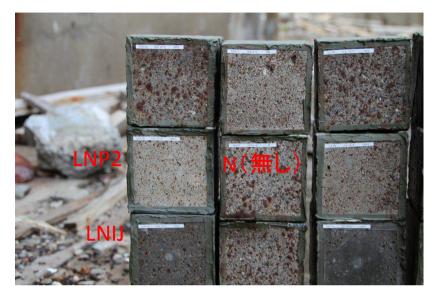
16号棟-59号棟間 (飛来塩分の多い環境)



69号棟(端島病院)西側 (飛来塩分が中程度の環境)

17号棟居室内 (飛来塩分がない環境)

飛来塩分量 (試験体による測定)



暴露 場所	向き	表面 Cl-量 (kg/m³)	見掛けの 拡散係数 (cm²/年)
59 号	海側	3.24	0.17
棟外	山側	2.86	0.20
69 号 棟外	海側	1.97	0.22
	山側	1.90	0.17

塩化物イオン量は、温水抽出塩分(イオンクロマトグラフで測定)

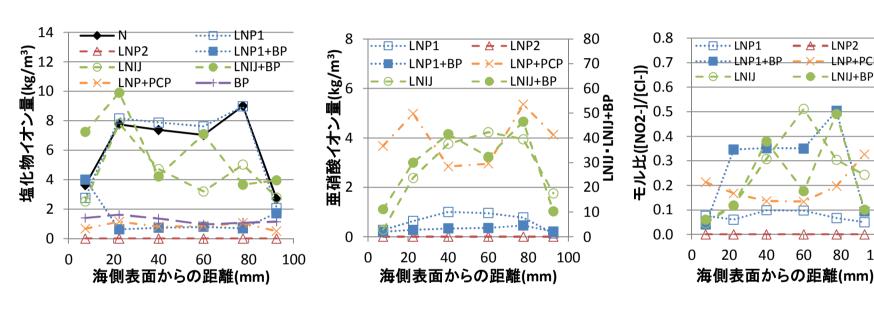
試験体の状況の例 (2016.10)

69 号棟 屋外

17 号棟 屋内

腐食状況の評価

グレード	状 況	表面	断面
0	全くさびていない状態		
1	一部の鉄粉がさびている状態	10.0-2-1 N	陸側
2	ほぼ全ての鉄粉がさ びている状態	グレード2の例	グレード2の例
3	一部の鉄粉が腐食・ 膨張し, さび汁が見ら れる	12-22-2 BP	[陸側]
4	ほぼ全ての鉄粉が腐食膨張し、さび汁が見られる	グレード4の例	グレード4の例


腐食状況 (Cl⁻:1.2kg/m³試験体)

早季坦武 垅板工计		海側			山側		
暴露場所	補修工法	表面	中性化	未中性化	未中性化	中性化	表面
	N	4.0	3.3	1.3	1.8	4.0	3.8
	LNP1	3.3	3.8	1.8	1.5	3.8	4.0
	LNP2	3.5	3.8	2.3	1.8	4.0	3.5
59号棟	LNP1+BP	3.0	1.8	0.3	0.3	1.8	3.0
屋外	LNIJ	3.0	1.8	0.3	0.3	0.5	1.0
	LNIJ+BP	3.0	1.5	0.5	0.0	2.0	2.0
	BP	2.0	1.5	0.3	0.0	1.5	4.0
	LNP+PCP	0.0	0.5	0.3	0.3	0.3	0.0
	N	3.3	3.0	1.0	1.5	3.0	3.0
69号棟	LNP1	4.0	3.8	1.8	1.8	3.8	4.0
屋外	LNP2	3.5	4.0	1.3	1.5	3.3	3.0
	LNIJ	1.0	0.8	0.3	0.3	0.8	2.3
	N	1.3	1.5	0.5	0.5	1.5	1.3
	LNP1	1.0	0.8	0.3	0.3	8.0	1.3
17号棟 屋内	LNP1+BP	1.0	0.8	0.3	0.3	1.0	1.0
	LNIJ	0.0	0.8	0.0	0.3	0.5	0.0
	BP	2.0	1.5	0.3	0.3	1.5	1.0
	LNP+PCP	0.0	0.3	0.3	0.0	0.3	0.0

腐食状況(Cl⁻:10kg/m³試験体)

暴露場所 補修工法		海側			山側		
		表面	中性化	未中性化	未中性化	中性化	表面
	N	3.8	3.3	2.0	1.8	3.8	3.8
	LNP1	4.0	3.0	0.8	1.0	4.0	4.0
	LNP2	4.0	3.3	1.0	1.0	3.5	3.8
59号棟	LNP1+BP	2.8	2.3	0.5	0.5	3.0	3.0
屋外	LNIJ	3.8	2.5	0.3	0.8	2.8	3.8
	LNIJ+BP	3.8	2.0	0.8	1.0	1.8	2.3
	BP	3.8	2.3	1.0	1.8	2.5	3.8
	LNP+PCP	0.0	1.8	0.8	1.0	2.0	0.0
	N	2.8	3.0	2.3	2.3	3.3	3.3
69号棟	LNP1	3.3	3.3	1.5	1.5	2.5	4.0
屋外	LNP2	4.0	2.5	0.8	0.8	3.3	3.8
	LNIJ	1.5	1.8	0.5	0.3	1.8	3.0
	N	2.3	2.5	2.5	2.3	2.8	2.3
	LNP1	2.0	2.5	1.8	2.0	2.3	2.0
17号棟 屋内	LNP1+BP	2.3	2.5	0.5	0.5	2.3	2.0
	LNIJ	0.8	1.5	0.5	0.5	2.0	1.0
	BP	2.5	2.8	1.0	0.5	2.8	1.8
	LNP+PCP	0.0	1.8	0.8	1.0	1.8	0.0

塩化物および亜硝酸イオンの分布の例

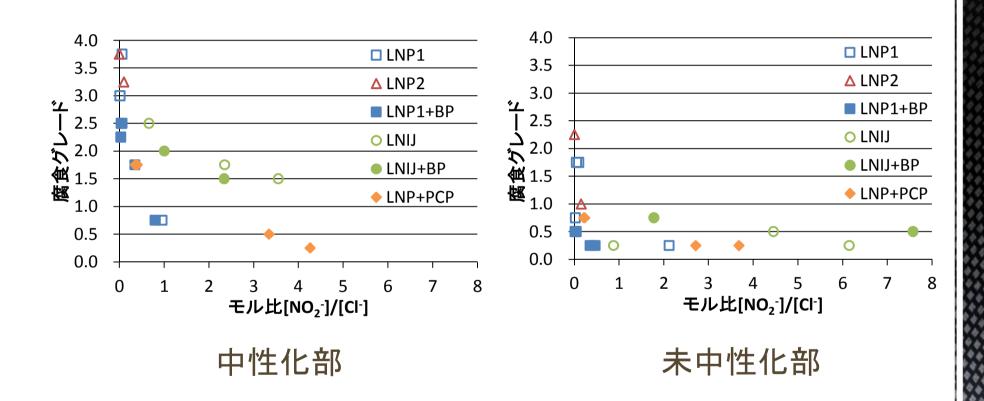
塩化物イオン分布 (温水抽出塩分)

亜硝酸イオン分布

モル比分布 ([NO₂-]/[Cl-])

16-59号棟屋外 • Cl⁻=1.2kg/m³試験体

16


14

10 8

100

.NP+PCP-LNIJ-LNIJ+BP

亜硝酸リチウムの必要量の検討

モル比([NO₂-]/[Cl-])と腐食グレードの関係

補修工法の考え方の例

場所	内在塩分	見え掛かり	見え掛かりなし
屋内	小	塗布含浸(ただし塗布量多め)注入工法	・塗布含浸(ただし塗布量多め)・ペースト塗布
(飛来塩分小)	大	• 注入工法	・ペースト塗布
屋外 (飛来塩分大)	小	塗布含浸(塗布量 多め)+浸透性吸水 防止剤注入工法	・同左+ペースト塗布
	大	・注入工法(塗布量 多め)+浸透性吸水 防止剤	・同左+ペースト塗布

亜硝酸リチウムの塗布量、注入量等は塩分量に応じて調整 塗布含浸については、より含浸出来る方法を要検討

まとめ

軍艦島の建築物の現況と抱えている問題点

- ◆厳しい塩害環境(飛来塩分)
- ◆内在塩分(建設年代によって大量の塩分)
- ◆経年による中性化
 - \downarrow
- ◆鉄筋腐食の進行

→止まらない劣化

- ◆部材性能(構造性能)に対する懸念 →崩壊の危険
- このような状況は、軍艦島だけの問題ではなく、 今後のRC系歴史的構造物が抱える問題

歴史構造物の保存・保全のための課題

残すべき価値は?

- ➤ Authenticityの理解 解釈
- ▶保存・保全のための優先順位

残すための方法は?

- ▶外観保持・可逆性・コスト
- ▶ 亜硝酸リチウムを適用した補修工法